Assume that you plan to use a significance level of alpha 0
Assume that you plan to use a significance level of alpha = 0.05 to test the claim that p1 = p2. Use the given sample sizes and numbers of successes to find the P-value for the hypothesis test. n1 = 50; n2 = 50x1 = 8; x2 = 7
0.3897
0.6103
0.7794
0.2206
| 0.3897 | ||
| 0.6103 | ||
| 0.7794 | ||
| 0.2206 | 
Solution
Formulating the hypotheses          
 Ho: p1^ - p2^   =   0  
 Ha: p1^ - p2^   =/=   0  
 Here, we see that pdo =    0   , the hypothesized population proportion difference.  
           
 Getting p1^ and p2^,          
           
 p1^ = x1/n1 =    0.16      
 p2 = x2/n2 =    0.14      
           
 Also, the standard error of the difference is          
           
 sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.071386273      
           
 Thus,          
           
 z = [p1 - p2 - pdo]/sd =    0.280165907      
           
 As significance level =    0.05   , then the critical z is  
           
 zcrit =    1.959963985      
           
 Also, the p value is          
           
 P =    0.779350222 = 0.7794 [OPTION C, ANSWER]
       

