A business magazine targeting recent college graduates condu
A business magazine targeting recent college graduates conducted a study to estimate its subscribers annual household income and the proportion who plan to make a real estate purchase within the next year. The results from a random sample of n=36 subscribers are as follows:
annual income:x= $70,400; s=$16,500
sixteen subscribers plan to make a real estate purchase within the next year.
a. construct a 98% confidence interval estimate for the subscrivers\' population mean annual household income.
b. explain/interpret in words the meaning associated with the confidence interval from part a.
d. using 90% confidence and p* equal to your point estimate from part c., how large a sample is needed if the magazine desires a margin of error equal to 0.07 when estimating the population proportion of customers who plan to make a real estate purchase within the next year?
Solution
a)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.01          
 X = sample mean =    70400          
 z(alpha/2) = critical z for the confidence interval =    2.326347874          
 s = sample standard deviation =    16500          
 n = sample size =    36          
               
 Thus,              
               
 Lower bound =    64002.54335          
 Upper bound =    76797.45665          
               
 Thus, the confidence interval is              
               
 (   64002.54335   ,   76797.45665   ) [ANSWER]
*********************
b)
We are 98% confidence that the true population mean is between $64002.54 and $76797.46.
*********************
c)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.444444444          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.082817332          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.308222055          
 upper bound = p^ + z(alpha/2) * sp =    0.580666834          
               
 Thus, the confidence interval is              
               
 (   0.308222055   ,   0.580666834   ) [ANSWER]
****************************
D)
Note that      
       
 n = z(alpha/2)^2 p (1 - p) / E^2      
       
 where      
       
 alpha/2 =    0.05  
        
       
 Using a table/technology,      
       
 z(alpha/2) =    1.644853627  
       
 Also,      
       
 E =    0.07  
 p =    0.444444444  
       
 Thus,      
       
 n =    136.3337593  
       
 Rounding up,      
       
 n =    137   [ANSWER]


