Show that the function T R2 rightarrow R2 given by Txy yx i
Show that the function T: R^2 rightarrow R^2 given by T(x,y) = (-y,x) is a linear transformation.
Solution
Proof. We need to show that if a = (a1, a2) and b = (b1, b2)
then T(a + b) = T(a) + T(b)
and for a scalar k we have T(ka) = kT(a).
T(a + b) = T((a1, a2) + (b1, b2))
= T(-a2-b2, a1+b1)
=T(a1, a2) + T(b1, b2)
= T(a) + T(b)
We also have T(ka) = T(k(a1, a2)
= T(ka1, ka2) =
=<-ka2-kb2,ka1+kb1>
= k<-a2-b2,a1+b1>
Therefore, T is a linear transformation.
