give a precise expression for the minimum number of nodes in
give a precise expression for the minimum number of nodes in an AVL tree of height h.
b) what is the minimum number of nodes in an AVL tree of height 15?
Solution
Answer:
Expression of the minimum number of nodes in an AVL tree :
N(h) = N(h - 1) + 1 + N(h - 2 )
= 1 , h = 0
= 2 , h = 1
Now , when h = 3
N(3) = N(3 - 1) + 1 + N( 3-2)
= N(2) + 1 + N(1)
= 4 + 1 + 2 = 7
N(4 ) = N(3) + 1 + N(2)
= 7 + 1 + 4 = 12
N(5) = N(4) + 1 + N(3)
= 12 + 1 + 7 = 20
N(6) = N(5) + 1 + N(4)
= 20 + 1 + 12 = 33
N(7) = N(6) + 1 + N(5)
= 33 + 1 + 20 = 54
N(8) = N(7) + 1 + N(6)
= 54 + 1 + 33 = 88
N(9) = N(8) + 1 + N(7)
= 88 + 1 + 54 = 143
N(10) = N(9) + 1 + N(8) = 143 + 88 + 1 = 232
N(11) = N(10) + N(9) + 1 = 232 + 1 + 143 = 376
N(12) = N(11) + N(10) +1 = 376 + 232 + 1 = 609
N(13) = N(12) + N(11) +1 = 609 + 376 + 1 = 986
N(14) = N(13) + N(12) +1 = 986 + 609 + 1 = 1596
N(15) = N(14) + 1 + N(13) = 1596 + 1 + 986 = 2583
Therefore number of nodes in an avl tree of height h = 2583

