Solve for xR02pi 2cos2x 7cosx 4 0 Do I use u substitution le
Solve for xR[0,2pi]: 2cos^2(x) -7cos(x) -4 =0.
Do I use u substitution? let cos(x) = u
2u^2-7u-4=0; (2u+1)(u-4); u= -1/2, 4
cos(x)= -1/2
x= 2pi/3 + 2pik, element of the reals ER(backwards E)
cos(x)=4, is 4 to big of range, so do I ignore 4. I need someon to clarify my work and help me solve it the right way if I did it wrong. Thanks
Solution
you solved it correctly up to cos(x)=-1/2 there are two solutions 2pi/3 + 2pik and -2pi/3 + 2pik. we are only looking for solution in the interval [0,2*pi] so just 2*pi/3 and -2*pi/3+2*pi which equals 4*pi/3. so x=2*pi/3 and x=4*pi/3 are the solutions ignore cos(x)=4 because it is not possible.![Solve for xR[0,2pi]: 2cos^2(x) -7cos(x) -4 =0. Do I use u substitution? let cos(x) = u 2u^2-7u-4=0; (2u+1)(u-4); u= -1/2, 4 cos(x)= -1/2 x= 2pi/3 + 2pik, elemen Solve for xR[0,2pi]: 2cos^2(x) -7cos(x) -4 =0. Do I use u substitution? let cos(x) = u 2u^2-7u-4=0; (2u+1)(u-4); u= -1/2, 4 cos(x)= -1/2 x= 2pi/3 + 2pik, elemen](/WebImages/32/solve-for-xr02pi-2cos2x-7cosx-4-0-do-i-use-u-substitution-le-1091867-1761575059-0.webp)