Solve by the method of Laplace Transform y 2y 5y 3ex sinx
Solve by the method of Laplace Transform
y\'\' + 2y\' + 5y = 3e-x sin(x) , y(0) = 0 , y0 (0) = 3
Please show all the steps when taking the laplace inverse.
Solution
Taking Laplace Transform of the given equation
L[ y\'\' ] + 2L[ y\' ] + 5L[ y ] = L[ 3e-x sin(x) ]
s2Y - s.y(0) - y\'(0) + 2Y + 5Y = 3/( (s + 1)2 + 1 )
Plugging the given values of y(0) = 0 and y\'(0) = 3
s2Y - 3 + 2sY + 5Y = 3/( (s + 1)2 + 1 )
Y( s2 + 2s + 5 ) = 3 + ( 3/( (s + 1)2 + 1 ) )
Y = 1/( s2 + 2s + 5 ) ( 3 + ( 3/( (s + 1)2 + 1 ) ) )
Y = 3/( s2 + 2s + 5 ) + 3/( ( s2 + 2s + 5 )*( s2 + 2s + 2 ) )
Y = 3/( s2 + 2s + 5 ) + ( ( s2 + 2s + 5 ) - ( s2 + 2s + 2 ) )/( ( s2 + 2s + 5 )*( s2 + 2s + 2 ) )
Y = 3/( s2 + 2s + 5 ) + 1/( s2 + 2s + 2 ) - 1/( s2 + 2s + 5 )
Y = 1/( s2 + 2s + 2 ) + 2/( s2 + 2s + 5 )
Y = 1/( (s+1)2 + 12 ) + 2/( (s + 1)2 + 22 )
Taking Inverse Laplace Transform
y(t) = e-tsin(t) + e-tsin(2t)
y(t) = e-t( sin(t) + sin(2t) )

