y 6y 9y 4e2x y0 4 y0 3SolutionFirst we solve the homoge
Solution
First we solve the homogeneous ode
y\'\'+6y\'+9y=0
Let, y=e^{kx}
Substituting gives
k^2+6k+9=0
THis gives k=-3
So,
y= e^{3x}(A+Bx)
Now for particular solution we make guess based on the inhomogeneous part
yp=C e^{2x}
Substituting gives
4C e^{2x}+12 Ce^{2x}+9C e^{2x}=4 e^{2x}
THis gives, C=4/25
Hence,y= e^{3x}(A+Bx)+4 e^{2x}/25
y(0)=4
So, A+4/25=4
A=96/25
y\'= e^{3x}(B+3A+3Bx)+8 e^{2x}/25
y\'(0)=B+3A+8/25=3=B+288/25+8/25
3=B+296/25
B=-221/25

