Find the solution of the initial value problem y 2y 5y e3
Solution
Solution :
Apply L to both sides:
 (s2 L(y) - 3s - 3) + 2(s L(y) - 3) + 5 L(y) = 1/(s - (-3)).
 
 Solve for L(y):
 (s2 + 2s + 5) L(y) - 3s - 9 = 1/(s + 3)
 ==> (s2 + 2s + 5) L(y) = (3s + 9) + 1/(s + 3)
 ==> L(y) = (3s + 9)/(s2 + 2s + 5) + 1/[(s + 3)(s2 + 2s + 5)].
 --------
 a) Since s2 + 2s + 5 is irreducible, we only need to apply partial fractions to the second term.
 
 1/[(s + 3)(s2 + 2s + 5)] = A/(s + 3) + (Bs+C)/(s2 + 2s + 5)
 ==> 1 = A(s2 + 2s + 5) + (Bs+C)(s+3)
 
 Letting s = -3 ==> 1 = 8A ==> A = 1/8.
 So, 1 = (1/8)(s2 + 2s + 5) + (Bs+C)(s+3)
 ==> 8 = (s2 + 2s + 5) + 8(Bs+C)(s+3)
 ==> 0 = (s+3)(s-1) + 8(Bs+C)(s+3)
 ==> 0 = (s-1) + 8(Bs+C)
 ==> B = -1/8 and C = 1/8.
 
 Hence,
 L(y) = (3s + 9)/(s2 + 2s + 5) + (1/8) [1/(s + 3) + (-s+1)/(s2 + 2s + 5)]
 .......= (1/8) [(24s + 72)/(s2 + 2s + 5) + 1/(s + 3) + (-s+1)/(s2 + 2s + 5)]
 .......= (1/8) [(23s + 73)/(s2 + 2s + 5) + 1/(s + 3)].
 ------------
 b) Completing the square,
 L(y) = (1/8) [(23s + 73)/((s+1)2 + 4) + 1/(s + 3)]
 ......= (1/8) [(23(s+1) + 50)/((s+1)2 + 4) + 1/(s + 3)].
 
 Inverting:
 y(t) = (1/8) [23 e-t cos(2t) + (50/2) e-t sin(2t) + e-3t]
 .....= (1/8) [23 e-t cos(2t) + 25 e-t sin(2t) + e-3t].

