Assume that X is a binomial random variable with n 21 and p
Assume that X is a binomial random variable with n = 21 and p = 0.86. Calculate the following probabilities. (Round your intermediate and final answers to 4 decimal places.)
| a. P(X = 20) | |
| b. P(X = 19) | |
| c. P(X 19) | 
Solution
A)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    21      
 p = the probability of a success =    0.86      
 x = the number of successes =    20      
           
 Thus, the probability is          
           
 P (    20   ) =    0.143984703 [ANSWER]
****************
B)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    21      
 p = the probability of a success =    0.86      
 x = the number of successes =    19      
           
 Thus, the probability is          
           
 P (    19   ) =    0.234393703 [ANSWER]
********************
c)
 Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    21      
 p = the probability of a success =    0.86      
 x = our critical value of successes =    19      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   18   ) =    0.57950362
           
 Thus, the probability of at least   19   successes is  
           
 P(at least   19   ) =    0.42049638 [ANSWER]


