Use power series methods to solve the differential equation
Use power series methods to solve the differential equation y \'\' + (x 1) y = 0 at the point x\'= 0. It suffices to give the first six nonzero terms of the series solution
Solution
Let y = a0+a1x+a2x2+...+anxn+...
y\' = a1+2a2x+...+nanxn-1+...
y\" = 2a2+6a3x+...+n(n-1) anxn-2+...
y \'\' + (x 1) y = 0
becomes
2a2+6a3x+...+n(n-1) anxn-2+...
a0x+a1x2+a2x3+...+nanxn+1+...
-(+a0+a1x+a2x2+...+anxn+...)=0
Equate x^n to 0
2a2-a0 =0
a2 = 1/2 a0
6a3+a0-a1 =0
a3 = a1-a0
12a4+a1-a2 =0
12a4+a1-a0/2 =0
20a5+a2-a3 =0
20a5+a0/2-(a1-a0) =0
20a5 = a1+a0/2
(n+2)(n+1) an+2+(n-1)an-1-an=0
