Given a normal population whose mean is 615 and whose standa
Solution
Mean ( u ) =615
 Standard Deviation ( sd )=27
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 617) = (617-615)/27/ Sqrt ( 4 )
 = 2/13.5
 = 0.1481
 = P ( Z <0.1481) From Standard Normal Table
 = 0.55889
 P(X < 622) = (622-615)/27/ Sqrt ( 4 )
 = 7/13.5 = 0.5185
 = P ( Z <0.5185) From Standard Normal Table
 = 0.69795
 P(617 < X < 622) = 0.69795-0.55889 = 0.1391                  
               
 b)
 To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 617) = (617-615)/27/ Sqrt ( 16 )
 = 2/6.75
 = 0.2963
 = P ( Z <0.2963) From Standard Normal Table
 = 0.6165
 P(X < 622) = (622-615)/27/ Sqrt ( 16 )
 = 7/6.75 = 1.037
 = P ( Z <1.037) From Standard Normal Table
 = 0.85014
 P(617 < X < 622) = 0.85014-0.6165 = 0.2336                  
c)
 To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 617) = (617-615)/27/ Sqrt ( 26 )
 = 2/5.2951
 = 0.3777
 = P ( Z <0.3777) From Standard Normal Table
 = 0.64718
 P(X < 622) = (622-615)/27/ Sqrt ( 26 )
 = 7/5.2951 = 1.322
 = P ( Z <1.322) From Standard Normal Table
 = 0.90691
 P(617 < X < 622) = 0.90691-0.64718 = 0.2597  

