R or Python Use Monte Carlo simulation to estimate pi Draw a

R or Python

Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they are in the circle or not. Use a Sobol quasi random sequence to pick the 54 points which can be used with a prepackaged generator for R

Solution

sobol_lib.py

#! /usr/bin/env python

import math
from numpy import *

def i4_bit_hi1 ( n ):

#*****************************************************************************80
#
## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 0
# 1 1 1
# 2 10 2
# 3 11 2
# 4 100 3
# 5 101 3
# 6 110 3
# 7 111 3
# 8 1000 4
# 9 1001 4
# 10 1010 4
# 11 1011 4
# 12 1100 4
# 13 1101 4
# 14 1110 4
# 15 1111 4
# 16 10000 5
# 17 10001 5
# 1023 1111111111 10
# 1024 10000000000 11
# 1025 10000000001 11
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative. If N is nonpositive, the value will always be 0.
#
# Output, integer BIT, the number of bits base 2.
#
i = int ( n )
bit = 0
while ( True ):
if ( i <= 0 ):
break
bit += 1
i = ( i // 2 )
return bit

def i4_bit_lo0 ( n ):

#*****************************************************************************80
#
## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 1
# 1 1 2
# 2 10 1
# 3 11 3
# 4 100 1
# 5 101 2
# 6 110 1
# 7 111 4
# 8 1000 1
# 9 1001 2
# 10 1010 1
# 11 1011 3
# 12 1100 1
# 13 1101 2
# 14 1110 1
# 15 1111 5
# 16 10000 1
# 17 10001 2
# 1023 1111111111 1
# 1024 10000000000 1
# 1025 10000000001 1
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# Python version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative.
#
# Output, integer BIT, the position of the low 1 bit.
#
bit = 0
i = int ( n )
while ( 1 ):
bit = bit + 1
i2 = ( i // 2 )
if ( i == 2 * i2 ):
break
i = i2

return bit
  
def i4_sobol_generate ( m, n, skip ):

#*****************************************************************************80
#
## I4_SOBOL_GENERATE generates a Sobol dataset.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer M, the spatial dimension.
#
# Input, integer N, the number of points to generate.
#
# Input, integer SKIP, the number of initial points to skip.
#
# Output, real R(M,N), the points.
#
   r=zeros((m,n))
   for j in xrange (1, n+1):
       seed = skip + j - 2
       [ r[0:m,j-1], seed ] = i4_sobol ( m, seed )
   return r

def i4_sobol ( dim_num, seed ):

#*****************************************************************************80
#
## I4_SOBOL generates a new quasirandom Sobol vector with each call.
#
# Discussion:
#
# The routine adapts the ideas of Antonov and Saleev.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original FORTRAN77 version by Bennett Fox.
# MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Antonov, Saleev,
# USSR Computational Mathematics and Mathematical Physics,
# olume 19, 1980, pages 252 - 256.
#
# Paul Bratley, Bennett Fox,
# Algorithm 659:
# Implementing Sobol\'s Quasirandom Sequence Generator,
# ACM Transactions on Mathematical Software,
# Volume 14, Number 1, pages 88-100, 1988.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Ilya Sobol,
# USSR Computational Mathematics and Mathematical Physics,
# Volume 16, pages 236-242, 1977.
#
# Ilya Sobol, Levitan,
# The Production of Points Uniformly Distributed in a Multidimensional
# Cube (in Russian),
# Preprint IPM Akad. Nauk SSSR,
# Number 40, Moscow 1976.
#
# Parameters:
#
# Input, integer DIM_NUM, the number of spatial dimensions.
# DIM_NUM must satisfy 1 <= DIM_NUM <= 40.
#
# Input/output, integer SEED, the \"seed\" for the sequence.
# This is essentially the index in the sequence of the quasirandom
# value to be generated.   On output, SEED has been set to the
# appropriate next value, usually simply SEED+1.
# If SEED is less than 0 on input, it is treated as though it were 0.
# An input value of 0 requests the first (0-th) element of the sequence.
#
# Output, real QUASI(DIM_NUM), the next quasirandom vector.
#
   global atmost
   global dim_max
   global dim_num_save
   global initialized
   global lastq
   global log_max
   global maxcol
   global poly
   global recipd
   global seed_save
   global v

   if ( not \'initialized\' in globals().keys() ):
       initialized = 0
       dim_num_save = -1

   if ( not initialized or dim_num != dim_num_save ):
       initialized = 1
       dim_max = 40
       dim_num_save = -1
       log_max = 30
       seed_save = -1
#
#   Initialize (part of) V.
#
       v = zeros((dim_max,log_max))
       v[0:40,0] = transpose([ \\
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \\
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \\
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \\
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])

       v[2:40,1] = transpose([ \\
           1, 3, 1, 3, 1, 3, 3, 1, \\
           3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \\
           1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \\
           3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ])

       v[3:40,2] = transpose([ \\
           7, 5, 1, 3, 3, 7, 5, \\
           5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \\
           5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \\
           5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ])

       v[5:40,3] = transpose([ \\
           1, 7, 9,13,11, \\
           1, 3, 7, 9, 5,13,13,11, 3,15, \\
           5, 3,15, 7, 9,13, 9, 1,11, 7, \\
           5,15, 1,15,11, 5, 3, 1, 7, 9 ])
  
       v[7:40,4] = transpose([ \\
           9, 3,27, \\
           15,29,21,23,19,11,25, 7,13,17, \\
           1,25,29, 3,31,11, 5,23,27,19, \\
           21, 5, 1,17,13, 7,15, 9,31, 9 ])

       v[13:40,5] = transpose([ \\
                           37,33, 7, 5,11,39,63, \\
       27,17,15,23,29, 3,21,13,31,25, \\
           9,49,33,19,29,11,19,27,15,25 ])

       v[19:40,6] = transpose([ \\
           13, \\
           33,115, 41, 79, 17, 29,119, 75, 73,105, \\
           7, 59, 65, 21,   3,113, 61, 89, 45,107 ])

       v[37:40,7] = transpose([ \\
           7, 23, 39 ])
#
#   Set POLY.
#
       poly= [ \\
           1,   3,   7,   11,   13,   19,   25,   37,   59,   47, \\
           61,   55,   41,   67,   97,   91, 109, 103, 115, 131, \\
           193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \\
           213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ]

       atmost = 2**log_max - 1
#
#   Find the number of bits in ATMOST.
#
       maxcol = i4_bit_hi1 ( atmost )
#
#   Initialize row 1 of V.
#
       v[0,0:maxcol] = 1

#
#   Things to do only if the dimension changed.
#
   if ( dim_num != dim_num_save ):
#
#   Check parameters.
#
       if ( dim_num < 1 or dim_max < dim_num ):
           print \'I4_SOBOL - Fatal error!\'
           print \'   The spatial dimension DIM_NUM should satisfy:\'
           print \'       1 <= DIM_NUM <= %d\'%dim_max
           print \'   But this input value is DIM_NUM = %d\'%dim_num
           return

       dim_num_save = dim_num
#
#   Initialize the remaining rows of V.
#
       for i in xrange(2 , dim_num+1):
#
#   The bits of the integer POLY(I) gives the form of polynomial I.
#
#   Find the degree of polynomial I from binary encoding.
#
           j = poly[i-1]
           m = 0
           while ( 1 ):
               j = math.floor ( j / 2. )
               if ( j <= 0 ):
                   break
               m = m + 1
#
#   Expand this bit pattern to separate components of the logical array INCLUD.
#
           j = poly[i-1]
           includ=zeros(m)
           for k in xrange(m, 0, -1):
               j2 = math.floor ( j / 2. )
               includ[k-1] = (j != 2 * j2 )
               j = j2
#
#   Calculate the remaining elements of row I as explained
#   in Bratley and Fox, section 2.
#
           for j in xrange( m+1, maxcol+1 ):
               newv = v[i-1,j-m-1]
               l = 1
               for k in xrange(1, m+1):
                   l = 2 * l
                   if ( includ[k-1] ):
                       newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) )
               v[i-1,j-1] = newv
#
#   Multiply columns of V by appropriate power of 2.
#
       l = 1
       for j in xrange( maxcol-1, 0, -1):
           l = 2 * l
           v[0:dim_num,j-1] = v[0:dim_num,j-1] * l
#
#   RECIPD is 1/(common denominator of the elements in V).
#
       recipd = 1.0 / ( 2 * l )
       lastq=zeros(dim_num)

   seed = int(math.floor ( seed ))

   if ( seed < 0 ):
       seed = 0

   if ( seed == 0 ):
       l = 1
       lastq=zeros(dim_num)

   elif ( seed == seed_save + 1 ):
#
#   Find the position of the right-hand zero in SEED.
#
       l = i4_bit_lo0 ( seed )

   elif ( seed <= seed_save ):

       seed_save = 0
       l = 1
       lastq=zeros(dim_num)

       for seed_temp in xrange( int(seed_save), int(seed)):
           l = i4_bit_lo0 ( seed_temp )
           for i in xrange(1 , dim_num+1):
               lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )

       l = i4_bit_lo0 ( seed )

   elif ( seed_save + 1 < seed ):

       for seed_temp in xrange( int(seed_save + 1), int(seed) ):
           l = i4_bit_lo0 ( seed_temp )
           for i in xrange(1, dim_num+1):
               lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )

       l = i4_bit_lo0 ( seed )
#
#   Check that the user is not calling too many times!
#
   if ( maxcol < l ):
       print \'I4_SOBOL - Fatal error!\'
       print \'   Too many calls!\'
       print \'   MAXCOL = %d\ \'%maxcol
       print \'   L =           %d\ \'%l
       return
#
#   Calculate the new components of QUASI.
#
   quasi=zeros(dim_num)
   for i in xrange( 1, dim_num+1):
       quasi[i-1] = lastq[i-1] * recipd
       lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )

   seed_save = seed
   seed = seed + 1

   return [ quasi, seed ]

def i4_uniform ( a, b, seed ):

#*****************************************************************************80
#
## I4_UNIFORM returns a scaled pseudorandom I4.
#
# Discussion:
#
# The pseudorandom number will be scaled to be uniformly distributed
# between A and B.
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Paul Bratley, Bennett Fox, Linus Schrage,
# A Guide to Simulation,
# Springer Verlag, pages 201-202, 1983.
#
# Pierre L\'Ecuyer,
# Random Number Generation,
# in Handbook of Simulation,
# edited by Jerry Banks,
# Wiley Interscience, page 95, 1998.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Peter Lewis, Allen Goodman, James Miller
# A Pseudo-Random Number Generator for the System/360,
# IBM Systems Journal,
# Volume 8, pages 136-143, 1969.
#
# Parameters:
#
# Input, integer A, B, the minimum and maximum acceptable values.
#
# Input, integer SEED, a seed for the random number generator.
#
# Output, integer C, the randomly chosen integer.
#
# Output, integer SEED, the updated seed.
#
   if ( seed == 0 ):
       print \'I4_UNIFORM - Fatal error!\'
       print \'   Input SEED = 0!\'

   seed = math.floor ( seed )
   a = round ( a )
   b = round ( b )

   seed = mod ( seed, 2147483647 )

   if ( seed < 0 ) :
       seed = seed + 2147483647

   k = math.floor ( seed / 127773 )

   seed = 16807 * ( seed - k * 127773 ) - k * 2836

   if ( seed < 0 ):
       seed = seed + 2147483647

   r = seed * 4.656612875E-10
#
#   Scale R to lie between A-0.5 and B+0.5.
#
   r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 )
#
#   Use rounding to convert R to an integer between A and B.
#
   value = round ( r )

   value = max ( value, min ( a, b ) )
   value = min ( value, max ( a, b ) )

   c = value

   return [ int(c), int(seed) ]

def prime_ge ( n ):

#*****************************************************************************80
#
## PRIME_GE returns the smallest prime greater than or equal to N.
#
# Example:
#
# N PRIME_GE
#
# -10 2
# 1 2
# 2 2
# 3 3
# 4 5
# 5 5
# 6 7
# 7 7
# 8 11
# 9 11
# 10 11
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be bounded.
#
# Output, integer P, the smallest prime number that is greater
# than or equal to N.  
#
   p = max ( math.ceil ( n ), 2 )
   while ( not isprime ( p ) ):
       p = p + 1

   return p

def isprime(n):

#*****************************************************************************80
#
## IS_PRIME returns True if N is a prime number, False otherwise
#
# Licensing:
#
# This code is distributed under the MIT license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be checked.
#
# Output, boolean value, True or False
#
   if n!=int(n) or n<1:
       return False
   p=2
   while p<n:
       if n%p==0:
           return False
       p+=1

   return True
  

monte.py


from random import random
from math import hypot
from sobol_lib import i4_sobol_generate

MAX_POINT = 54
def monteCarlo():
insideCicle = 0;
#get 54 points from solab library sequence Generator
x_point, y_point = i4_sobol_generate(2, MAX_POINT,5 + random() % 20) # generating 2 dimensional points such that skipping 5+ random() % 20 points
for i in range(0, MAX_POINT):
#circle has center point (0.5,0.5)
if hypot(x_point[i] - 0.5, y_point[i] - 0.5) < 0.25: #0.5 is the radius of the circle , and here checking if point is inside circle or not
insideCicle +=1
print \"No of points inside circle is \", insideCicle
print \'Extimated pi is (4*insideCicle / MAX_POINT) which is: \', 4.0 * insideCicle / MAX_POINT

monteCarlo()

You might be already aware of monte carlo simulation on a circle inside square. If not I am going to explain it anyway.

So area of circle is pi*r2 and square is 4*r2 here r is 0.5 so area of circle is pi and area of square is 4.So there ratio would be pi / 4. It means if you pick n random points inside the square then out of those N*pi / 4 points will lie inside it . It is an approximation so ~= rather than =.

So pi ~= 4*No.of points inside the circle / N which is the approximate value.

I have used public sobol library to generate the sequence. If there is any mistake you can ask me.

R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they
R or Python Use Monte Carlo simulation to estimate pi. Draw a one by one square and draw a circle in it. Choose 54 points on the 1x1 sqaure and measure if they

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site