Use the normal model N 110158 for the weights of the steers
Use the normal model N (1101,58) for the weights of the steers.
A) What weight represents the 57th quartile?
B) What weight represents the 90th quartile?
C) Whats the IQR of the weights of these steers?
Solution
Do you mean percentile instead of quartile? I assumed so, as we only have 4 quartiles.
I assume that 58 here is the variance, not the standard deviation.
So I use
s = sqrt(58) = 7.615773106
a)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.57      
           
 Then, using table or technology,          
           
 z =    0.176374165      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1101      
 z = the critical z score =    0.176374165      
 s = standard deviation =    7.615773106      
           
 Then          
           
 x = critical value =    1102.343226   [answer]
******************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.9      
           
 Then, using table or technology,          
           
 z =    1.281551566      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1101      
 z = the critical z score =    1.281551566      
 s = standard deviation =    7.615773106      
           
 Then          
           
 x = critical value =    1110.760006      
   
********************************
C)
As
IQR = 75th percentile - 25th percentile
for 75th percentile:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.75      
           
 Then, using table or technology,          
           
 z =    0.67448975      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1101      
 z = the critical z score =    0.67448975      
 s = standard deviation =    7.615773106      
           
 Then          
           
 x = critical value =    1106.136761      
For 25th percentile:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.25      
           
 Then, using table or technology,          
           
 z =    -0.67448975      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    1101      
 z = the critical z score =    -0.67448975      
 s = standard deviation =    7.615773106      
           
 Then          
           
 x = critical value =    1095.863239      
Then,
IQr = Q3-Q1 = 1106.136761 - 1095.863239
IQR = 10.273522 [ANSWER]


