httpsdocsgooglecomfiled0B9NKCe9Ct3e3bkNYekJOSVJENE0editpref2

https://docs.google.com/file/d/0B9NKCe9Ct3e3bkNYekJOSVJENE0/edit?pref=2&pli=1

Solution

Let initial population be P0

Then P(t) = P0ekt for a suitable k

Using the given information

P(13.81) = P0/2 = P0e13.81k

Cancel P0 and simplify to get

1/2 = e13.81k

Take log

-0.6931 = 13.81 k (1)

k = -0.5019

Hence P(t) = P0e-0.5019t

--------------------------------------------

P(25) = P0 e-0.5019(25)

P(25)/P0 = 3.558x10-6

i.e. 0.003558% remain after 30 seconds

Decayed would be 99.986442%

 https://docs.google.com/file/d/0B9NKCe9Ct3e3bkNYekJOSVJENE0/edit?pref=2&pli=1SolutionLet initial population be P0 Then P(t) = P0ekt for a suitable k Using

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site