httpsdocsgooglecomfiled0B9NKCe9Ct3e3bkNYekJOSVJENE0editpref2
https://docs.google.com/file/d/0B9NKCe9Ct3e3bkNYekJOSVJENE0/edit?pref=2&pli=1
Solution
Let initial population be P0
Then P(t) = P0ekt for a suitable k
Using the given information
P(13.81) = P0/2 = P0e13.81k
Cancel P0 and simplify to get
1/2 = e13.81k
Take log
-0.6931 = 13.81 k (1)
k = -0.5019
Hence P(t) = P0e-0.5019t
--------------------------------------------
P(25) = P0 e-0.5019(25)
P(25)/P0 = 3.558x10-6
i.e. 0.003558% remain after 30 seconds
Decayed would be 99.986442%
