The DMV reports that 56 of all drivers will get into an acci
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.0614          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.002400626          
               
 Now, for the critical z,              
 alpha/2 =   0.005          
 Thus, z(alpha/2) =    2.575829304          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.006183602          
 lower bound = p^ - z(alpha/2) * sp =   0.055216398          
 upper bound = p^ + z(alpha/2) * sp =    0.067583602          
               
 Thus, the confidence interval is              
               
 (   0.055216398   ,   0.067583602   ) [ANSWER]
***********************
b)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.0614          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.002400626          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.003948678          
 lower bound = p^ - z(alpha/2) * sp =   0.057451322          
 upper bound = p^ + z(alpha/2) * sp =    0.065348678          
               
 Thus, the confidence interval is              
               
 (   0.057451322   ,   0.065348678   ) [ANSWER]
******************************
c)
The 99% confidence interval has a larger margin of error. [ANSWER]
Larger confidence levels yield greater margin of errors because you have to take a larger interval to be \"more confident\" that you have the true proportion.


