20 of fine dinning restaurants have policies of restricting
20% of fine dinning restaurants have policies of restricting the use of cell phones. If you select a random sample of 100 fine dinning restaurants a.) What is the probability that the sample has between 15% and 25% that have established policies restricting cell phone use? b.) The probability is 90% that the sample percentage will be contained within what symmetrical limits of the population percentage? c.) Supposed that a year later, a random sample of 100 restaurants were selected and it was found out that 31% had policies restricting the use of cell phones. Do you think that the population percentage has changed?
Solution
Here, the distribution of the proportion is
u = mean = 0.20
 standard deviation = sqrt(p(1-p)/n) = sqrt(0.20*(1-0.20)/100) = 0.04
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    0.15      
 x2 = upper bound =    0.25      
 u = mean =    0.2      
           
 s = standard deviation =    0.04      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.25      
 z2 = upper z score = (x2 - u) / s =    1.25      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.105649774      
 P(z < z2) =    0.894350226      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.788700453   [ANSWER]
*****************
b)
The middle 90% is the interval between the 5th and 95th percentile.
5th percentile:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.05      
           
 Then, using table or technology,          
           
 z =    -1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    0.2      
 z = the critical z score =    -1.644853627      
 s = standard deviation =    0.04      
           
 Then          
           
 x = critical value =    0.134205855      
95th percentile:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    0.2      
 z = the critical z score =    1.644853627      
 s = standard deviation =    0.04      
           
 Then          
           
 x = critical value =    0.265794145
Thus, the interval is between 0.134205855 and 0.265794145. [ANSWER]
**************************
c)
Yes, because 0.31 is outside the interval in part B.


