An Xray has a probabilty of 095 of showing a fracture in the
An X-ray has a probabilty of 0.95 of showing a fracture in the leg. If 5 different X-Rays are taken on a particular leg, find the probability that:
a. all five X-rays identify the fracture
b. the fracture does not show up
c. at least 3 X-Rays show the fracture
d. only one X-ray shows the fracture
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success =    0.95      
 x = the number of successes =    5      
           
 Thus, the probability is          
           
 P (    5   ) =    0.773780938 [ANSWER]
**************
b)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success =    0.95      
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    3.125*10^-7
*******************
c)
Note that P(at least x) = 1 - P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    5      
 p = the probability of a success =    0.95      
 x = our critical value of successes =    3      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   2   ) =    0.001158125
           
 Thus, the probability of at least   3   successes is  
           
 P(at least   3   ) =    0.998841875 [ANSWER]
*******************
d)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    5      
 p = the probability of a success =    0.95      
 x = the number of successes =    1      
           
 Thus, the probability is          
           
 P (    1   ) =    2.96875*10^-5 [ANSWER]


