Factor the expression completely 2 csc2 w 9 csc w 10 2 cs
Solution
1) 2 csc^2 w + 9csc w + 10
find two factors of 2*10 that is 20 such that they add up to become 9
two factors of 20 are 5 and 4
splitting the mid term in terms of 5 and 4
2 csc^2 w + 4csc w + 5 csc w + 10
2 csc w ( csc w + 2) + 5 ( csc w + 2)
factors are
( 2 csc w + 5) ( csc w + 2)
2) sin ( -13pi/ 12)
-13pi / 12 = 2pi/12 - 15pi/12 = pi/6 - 5pi/4
sin ( pi/6 - 5pi/4 ) = sin pi/6 cos 5pi/4 - cos pi/6 sin 5pi/4
= 1/2 * (-1/sqrt 2) - sqrt 3 / 2 ( -1/sqrt 2)
= - 1/ 2sqrt 2 + sqrt3 / 2 sqrt 2
= ( 2sqrt 6 - 2 sqrt 2 ) / 8
= (sqrt 6 - sqrt 2 )/ 4 or (- sqrt 2 + sqrt 6 ) / 4 ( option d)
c) cos 65 degrees = cos ( 90 - 25 )
cos ( 90 - theta ) = sin theta
hence , cos ( 90 - 25 ) = sin 25
d) cos ( 13pi/12)
cos (13pi/12 ) = cos ( 4pi/12 + 9pi/12 ) = cos ( pi/3 + 3pi/4 )
cos ( a+b) = cos a cos b - sin a sin b
cos ( pi/3 + 3pi/4 )= cos pi/3 cos 3pi/4 - sin pi/3 sin 3pi/4
plugging the values we get
cos ( 13pi/12) = - .9659

