A previous analysis of paper boxes showed that the standard
A previous analysis of paper boxes showed that the standard deviation of their lengths is 15 millimeters. A packer wishes to find the 99% confidence interval for the average length of a box. How many boxes does he need to measure to be accurate within 5 millimeters?
Solution
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.575829304  
       
 Also,      
       
 s = sample standard deviation =    15  
 E = margin of error =    5  
       
 Thus,      
       
 n =    59.71406941  
       
 Rounding up,      
       
 n =    60   [ANSWER]

