The life in hours of a 100watt light bulb is known to be app
The life in hours of a 100-watt light bulb is known to be approximately normally distributed with standard deviation s = 25 hours. A random sample of 20 bulbs has a mean life of 1014 hours.
A. Construct a 95% two-sided confidence interval on the mean life
B. Construct a 95% lower confidence interval on the mean life
C. Suppose we wanted the total width of the two-sided confidence interval on the mean life of the bulbs to be 6 hours at 95% confidence, what sample size should be used?
Solution
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    1014          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    25          
 n = sample size =    20          
               
 Thus,              
               
 Lower bound =    1003.043468          
 Upper bound =    1024.956532          
               
 Thus, the confidence interval is              
               
 (   1003.043468   ,   1024.956532   )
**************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Thanks!

