Martys Burger Bam has historically utilized a onewindow driv
Solution
a)
 Set Up Hypothesis
 Null , There Is No-Significance between them Ho: u1 = u2
 Alternate, There Is Significance between them - H1: u1 != u2
 Test Statistic
 X(Mean)=132.683
 Standard Deviation(s.d1)=64.632 ; Number(n1)=6
 Y(Mean)=120.483
 Standard Deviation(s.d2)=54.276; Number(n2)=6
 we use Test Statistic (t) = (X-Y)/Sqrt(s.d1^2/n1)+(s.d2^2/n2)
 to =132.683-120.483/Sqrt((4177.29542/6)+(2945.88418/6))
 to =0.35
 | to | =0.35
 Critical Value
 The Value of |t | with Min (n1-1, n2-1) i.e 5 d.f is 2.015
 We got |to| = 0.35408 & | t  | = 2.015
 Make Decision
 Hence Value of |to | < | t  | and Here we Do not Reject Ho
 P-Value: Two Tailed ( double the one tail ) - Ha : ( P != 0.3541 ) = 0.738
 Hence Value of P0.1 < 0.738,Here We Do not Reject Ho
 b)
 CI = x1 - x2 ± t a/2 * Sqrt ( sd1 ^2 / n1 + sd2 ^2 /n2 )
 Where,
 x1 = Mean of Sample 1, x2 = Mean of sample2
 sd1 = SD of Sample 1, sd2 = SD of sample2
 a = 1 - (Confidence Level/100)
 ta/2 = t-table value
 CI = Confidence Interval
 Mean(x1)=132.683
 Standard deviation( sd1 )=64.632
 Sample Size(n1)=6
 Mean(x2)=120.483
 Standard deviation( sd2 )=54.276
 Sample Size(n1)=6
 CI = [ ( 132.683-120.483) ±t a/2 * Sqrt( 4177.295424/6+2945.884176/6)]
 = [ (12.2) ± t a/2 * Sqrt( 1187.2) ]
 = [ (12.2) ± 4.032 * Sqrt( 1187.2) ]
 = [-126.73 , 151.13]

