Martys Burger Bam has historically utilized a onewindow driv
Solution
a)
Set Up Hypothesis
Null , There Is No-Significance between them Ho: u1 = u2
Alternate, There Is Significance between them - H1: u1 != u2
Test Statistic
X(Mean)=132.683
Standard Deviation(s.d1)=64.632 ; Number(n1)=6
Y(Mean)=120.483
Standard Deviation(s.d2)=54.276; Number(n2)=6
we use Test Statistic (t) = (X-Y)/Sqrt(s.d1^2/n1)+(s.d2^2/n2)
to =132.683-120.483/Sqrt((4177.29542/6)+(2945.88418/6))
to =0.35
| to | =0.35
Critical Value
The Value of |t | with Min (n1-1, n2-1) i.e 5 d.f is 2.015
We got |to| = 0.35408 & | t | = 2.015
Make Decision
Hence Value of |to | < | t | and Here we Do not Reject Ho
P-Value: Two Tailed ( double the one tail ) - Ha : ( P != 0.3541 ) = 0.738
Hence Value of P0.1 < 0.738,Here We Do not Reject Ho
b)
CI = x1 - x2 ± t a/2 * Sqrt ( sd1 ^2 / n1 + sd2 ^2 /n2 )
Where,
x1 = Mean of Sample 1, x2 = Mean of sample2
sd1 = SD of Sample 1, sd2 = SD of sample2
a = 1 - (Confidence Level/100)
ta/2 = t-table value
CI = Confidence Interval
Mean(x1)=132.683
Standard deviation( sd1 )=64.632
Sample Size(n1)=6
Mean(x2)=120.483
Standard deviation( sd2 )=54.276
Sample Size(n1)=6
CI = [ ( 132.683-120.483) ±t a/2 * Sqrt( 4177.295424/6+2945.884176/6)]
= [ (12.2) ± t a/2 * Sqrt( 1187.2) ]
= [ (12.2) ± 4.032 * Sqrt( 1187.2) ]
= [-126.73 , 151.13]
