Let A a b c d be a square matrix of size 4 det A 1 Find d
Let A = [a b c d] be a square matrix of size 4, det A = - 1. Find det [-a + b 2b + a + c c d + a].
Solution
|-a+b 2b+a+c c d+a|
= |-a 2b+a+c c d+a| + |b 2b+a+c c d+a|
= |-a 2b c d+a| + |-a a c d+a| + |-a c c d+a| + |b 2b c d+a| + |b a c d+a| +|b c c d+a|
=|-a 2b c d| + |-a 2b c a| + |-a a c d| + |-a a c a| + |-a c c d| +|-a c c a| +|b 2b c d| +|b 2b c a| + |b a c a| + |b a c d| + |b c c d| + |b c c a|
=(-2)*(-1) + (-2)*(-1) + (2)*(-1) + (2)*(-1) = 0
Here the terms with all a b c and d all are the ones for which we have the determinant and one column is multioplied by 2 so we multiply the determinant value by 2 for the four cases.
For the rest 8 cases (using the fact the column jumbling does not change the detreminant value) we see that the 4 are negative and corresppondingly the 4 are positive which makes the total to be 0 for them.
![Let A = [a b c d] be a square matrix of size 4, det A = - 1. Find det [-a + b 2b + a + c c d + a].Solution|-a+b 2b+a+c c d+a| = |-a 2b+a+c c d+a| + |b 2b+a+c c Let A = [a b c d] be a square matrix of size 4, det A = - 1. Find det [-a + b 2b + a + c c d + a].Solution|-a+b 2b+a+c c d+a| = |-a 2b+a+c c d+a| + |b 2b+a+c c](/WebImages/32/let-a-a-b-c-d-be-a-square-matrix-of-size-4-det-a-1-find-d-1092900-1761575756-0.webp)