The US Dairy Industry wants to estimate the mean yearly milk
The U.S. Dairy Industry wants to estimate the mean yearly milk consumption. A sample of 27 people reveals the mean yearly consumption to be 75 gallons with a standard deviation of 25 gallons. Assume that the population distribution is normal. (Use z Distribution Table.)
For a 98% confidence interval, what is the value of t? (Round your answer to 3 decimal places.)
Develop the 98% confidence interval for the population mean. (Round your answers to 3 decimal places.)
| a-1. | What is the value of the population mean? | ||||||
| 
 | 
Solution
a-1. UNKNOWN [ANSWER]
Only the sample mean is given here.
****************
a-2.
75 gal. [ANSWER]
The best estimate of the population mean is the sample mean.
****************
c.
 As df = n - 1 = 26, then at 98% confidence, by table/technology,
t = 2.479 [ANSWER]
******************
d)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.01          
 X = sample mean =    75          
 t(alpha/2) = critical t for the confidence interval =    2.478629824          
 s = sample standard deviation =    25          
 n = sample size =    27          
 df = n - 1 =    26          
 Thus,              
 Margin of Error E =    11.9253133          
 Lower bound =    63.0746867          
 Upper bound =    86.9253133          
               
 Thus, the confidence interval is              
               
 (   63.0746867   ,   86.9253133   ) [ANSWER]
***********************
E)
NO, as 54 is not inside this interval. [ANSWER]


