Use the Laplace transform to solve the given initial value p

Use the Laplace transform to solve the given initial value problem. y\" - 2y\' + 2y = cos t; y(0) = 1, y\'(0) = 0, y(t) =

Solution

Solution :

y\'\' - 2y\' + 2y = cos(t)
=>
{ y\'\' - 2y\' + 2y } = { cos(t) }
<=>
{ y\'\' } - 2{ y\' } + 2{ y } = { cos(t) }
<=>
s²{ y } - sy(0) - y\'(0) - 2(s{ y } - y(0)) + 2{ y } = s/(s² + 1)
<=>
s²{ y } - s - 2(s{ y } - 1) + 2{ y } = s/(s² + 1)
<=>
(s² - 2s + 2){ y } = (s/(s² + 1)) + (s - 2)
<=>
{ y } = [s/(s² + 1)(s² - 2s + 2)] + [(s - 2)/(s² - 2s + 2)]

Decomposition to partial fractions for the first term on right hand side:
s/(s² + 1)(s² - 2s + 2) = (As + B)/(s² + 1) + (Cs + D)/(s² - 2s + 2)
<=>
s = (As + B)(s² - 2s + 2) + (Cs + D)(s² + 1)
<=>
s = s³(A + C) + s²(-2A + B + D) + s(2A - 2B + C) + 1(2B + D)
comparison of coefficients of same powers of s leads to
A + C = 0
-2A + B + D = 0
2A - 2B + C = 1
2B + D = 0

Solution to this equation system is:
A = 1/5
B = -2/5
C = -1/5
D = 4/5

Hence,
{ y } = (1/5)[(s - 2)/(s² + 1)] - (1/5)[(s - 4)/(s² - 2s + 2)] + [(s - 2)/(s² - 2s + 2)]
= (1/5)[(s - 2)/(s² + 1)] + (1/5)[(4s - 6)/(s² - 2s + 2)]
=>
y = ¹{ (1/5) [(s - 2)/(s² + 1)] + (1/5)[(4s - 6)/(s² - 2s + 2)] }
= (1/5)( ¹{ (s - 2)/(s² + 1) } + ¹{ (4s - 6)/(s² - 2s + 2) } )
The first term can be easily expanded into the transforms of a sine and cosine function:
¹{ (s - 2)/(s² + 1) }
= ¹{ s/(s² + 1) } - 2¹{ 1/(s² + 1) }
= cos(t) - 2sin(t)

The second term ra be reduced to the transform of sine and cosine by applying the shifting theorem
¹{ F(s - a) } = e^(at)¹{ F(s) }
=>
¹{ (4s - 6)/(s² - 2s + 2) }
= ¹{ (4s - 4 - 2)/(s² - 2s + 1 + 1) }
= ¹{ (4(s - 1) + 2)/( (s - 1)² + 1) }
= e^(t) ¹{ (4s + 2)/( s² + 1) }
= e^(t) ( 4¹{ s/(s² + 1) } - 2¹{ 1/(s² + 1) }
= e^(t) ( 4cos(t) - 2sin(t) )
=>
y(t) = (1/5)( cos(t) - 2sin(t) + e^(t)(4cos(t) - 2sin(t)) )

This is the required answer.

 Use the Laplace transform to solve the given initial value problem. y\
 Use the Laplace transform to solve the given initial value problem. y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site