Based on past data the sample mean of the credit card purcha
Based on past data, the sample mean of the credit card purchases at a large department store is $35. Assuming sample size is 25 and the population standard deviation is 10.
a) What % of samples are likely to have between 20 and 30? _________
b) Between what two values 90% of sample means fall? ____________
c) Below what value 99% of sample means fall?
d) Above what value only 1% of sample means fall??
Within what symmetrical limits of the population percentage will 95% of the sample percentages fall? ___________
Solution
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    20      
 x2 = upper bound =    30      
 u = mean =    35      
 n = sample size =    1      
 s = standard deviation =    10      
           
 Thus, the two z scores are          
           
 z1 = lower z score =    -1.5      
 z2 = upper z score =    -0.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.066807201      
 P(z < z2) =    0.308537539      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.241730337   [ANSWER, A]
**************************
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
               
 X = sample mean =    35          
 z(alpha/2) = critical z for the confidence interval =    1.644853627          
 s = sample standard deviation =    10          
 n = sample size =    25          
               
 Thus,              
               
 Lower bound =    31.71029275          
 Upper bound =    38.28970725          
               
 Thus, the confidence interval is              
               
 (   31.71029275   ,   38.28970725   ) [ANSWER, B]
***************************
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
               
 X = sample mean =    35          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    10          
 n = sample size =    25          
               
 Thus,              
               
 Lower bound =    29.84834139          
 Upper bound =    40.15165861          
               
 Thus, the confidence interval is              
               
 (   29.84834139   ,   40.15165861   ) [ANSWER, C]
*****************************
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.99      
           
 Then, using table or technology,          
           
 z =    2.326347874      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    35      
 z = the critical z score =    2.326347874      
 s = standard deviation =    10      
 n = sample size =    25      
 Then          
           
 x = critical value =    39.65269575 [ANSWER, D]
********************************
Hi! Please submit the next questions as a separate question, so that we may continue helping you. Thank you!


