Functions and Trigonometric Equations 52 Viewing Angle of an
Solution
1) from traingle 1 with base x ft and height 4 ft with angle a
tana = 4/x ; a = tan^-1(4/x)
from traingle 2 with base x ft and height 1 ft with angle b
tanb = 1/x ; b = tan^-1(1/x)
theta = a - b = tan^-1(4/x) - tan^-1(1/x)
2) i) theta = pi/6
pi/6 =tan^-1(4/x) - tan^-1(1/x)
pi/6 = tan^-1[ ( 4/x - 1/x)]/[ 1 +4/x^2]
1/sqrt3 = 3/(x +4/x)
x +4/x = 3sqrt3
x^2 - x(3sqrt3 )+4 =0
solve for x : we get x = 4.25 ft , 0.939 ft
ii) Similarly
theta = pi/8
pi/8 =tan^-1(4/x) - tan^-1(1/x)
pi/8 = tan^-1[ ( 4/x - 1/x)]/[ 1 +4/x^2]
tan(pi/8) = 3/(x +4/x)
0.414(x +4/x) = 3
0.414x^2 + -3x + 1.656 =0
solve for x : x = 6.64 ft ; x = 0.60 ft
c) i) theta = tan^-1(4/x) - tan^-1(1/x)
x =4 ; theta = tan^-1(4/4) - tan^-1(1/4)
= 45 - 14.04
= 30.96 deg
ii) theta = tan^-1(4/x) - tan^-1(1/x)
plug x = 3 ; theta = tan^-1(4/3) - tan^-1(1/3)
= 53.13 deg - 18.26 deg
= 34.87 deg


