The paired data below consists of test scores and hours of p

The paired data below consists of test scores and hours of preparation for 5 randomly selected students. Use this data set to answer the questions below: x Hours of preparation 5 2 9 6 10 y Test score 64 48 72 73 80 Find the standard error . Use formula or MS Excel.

Solution

Regression:

PART 1: Line of Regression Y on X i.e Y = bo + b1 X

Mean of X = X / n =    6.4
Mean of Y = Y / n =   67.4
(Xi - Mean)^2 =   41.2
(Yi - Mean)^2 =   599.2
(Xi-Mean)*(Yi-Mean) =   145.2
b1 = (Xi-Mean)*(Yi-Mean) / (Xi - Mean)^2    
b1 = 145.2 / 41.2 = 3.5243  
bo = Y / n - b1 * X / n  
bo = 67.4 - 3.5243*6.4 = 44.8447  
  
Y = bo + b1 X  
  
Y\'=44.8447+3.5243*X  

PART 2: Standard Error of Y on X i.e Y = bo + b1 X

Standard error = Sqrt( ( Y -Yi )^2/ n-2 )  
Y -Yi )^2 = 87.463  
Standard Error = 5.3995  

Xi Yi (Xi - Mean)^2 (Yi - Mean)^2 (Xi-Mean)*(Yi-Mean)
5 64 1.96 11.56 4.76
2 48 19.36 376.36 85.36
9 72 6.76 21.16 11.96
6 73 0.16 31.36 -2.24
10 80 12.96 158.76 45.36
The paired data below consists of test scores and hours of preparation for 5 randomly selected students. Use this data set to answer the questions below: x Hour

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site