The paired data below consists of test scores and hours of p
The paired data below consists of test scores and hours of preparation for 5 randomly selected students. Use this data set to answer the questions below: x Hours of preparation 5 2 9 6 10 y Test score 64 48 72 73 80 Find the standard error . Use formula or MS Excel.
Solution
Regression:
PART 1: Line of Regression Y on X i.e Y = bo + b1 X
Mean of X =  X / n =    6.4
 Mean of Y =  Y / n =   67.4
  (Xi - Mean)^2 =   41.2
  (Yi - Mean)^2 =   599.2
  (Xi-Mean)*(Yi-Mean) =   145.2
 b1 =  (Xi-Mean)*(Yi-Mean) /  (Xi - Mean)^2    
 b1 = 145.2 / 41.2 = 3.5243  
 bo =  Y / n - b1 *  X / n  
 bo = 67.4 - 3.5243*6.4 = 44.8447  
   
 Y = bo + b1 X  
   
 Y\'=44.8447+3.5243*X  
PART 2: Standard Error of Y on X i.e Y = bo + b1 X
Standard error = Sqrt( (  Y -Yi )^2/ n-2 )  
  Y -Yi )^2 = 87.463  
 Standard Error = 5.3995  
| Xi | Yi | (Xi - Mean)^2 | (Yi - Mean)^2 | (Xi-Mean)*(Yi-Mean) | 
| 5 | 64 | 1.96 | 11.56 | 4.76 | 
| 2 | 48 | 19.36 | 376.36 | 85.36 | 
| 9 | 72 | 6.76 | 21.16 | 11.96 | 
| 6 | 73 | 0.16 | 31.36 | -2.24 | 
| 10 | 80 | 12.96 | 158.76 | 45.36 | 

