Let A be an m times n matrix and let v1 vk be a basis for Nu
Solution
(a) Let a1w1+ a2 w2+…+a wk = 0.Then a1C-1 v1 +a2 C-1 v2 +…+ak C-1 vk=0 or, C-1(a1v1+a2v2+…+akvk)= 0. Now, since C is an invertible matrix, hence, C-1 0. Therefore, a1v1+a2v2+…+akvk = 0. Since, v1,v2,…, vk are linearly independent, hence a1 = a2 = …= ak = 0. This implies that w1,w2,…, wk are linearly independent.
(b) Let w span {w1,w2,…, wk }. Then w = C-1 v, where v span {v1,v2,…, vk}. Now, ACw = AC(a1w1+ a2w2 +… +ak wk) where a1 , a2,…,ak are arbitrary real numbers.Then ACw =AC (a1C-1v1+a2C-1 v2 +…+ak C-1vk)= AC C -1(a1v1+a2v2+…+akvk) = Av . However, Av = 0 as v span { v1,v2,…, vk } = Nul(A). Therefore, ACw =0. This implies that w Nul(AC). Hence span { w1,w2,…, wk } Nul(AC). Further, let w be an arbitrary vector in Nul(AC). Then (AC)w = 0 or, A(Cw) = 0. This means that Cw Nul (A) so that Cw = a1v1+a2v2+…+akvk, where a1 , a2,…,ak are arbitrary real numbers. Then, on multiplying both the sides to the left by C-1 , we get C-1 (Cw) = C-1(a1v1+a2v2+…+akvk) or, (C-1C )w =a1C-1 v1 +a2 C-1 v2 +…+ak C-1 vk, or, w = a1C-1 v1 +a2 C-1v2+…+ak C-1vk i.e. w span { w1,w2,…, wk }. Thus, Nul(AC) span { w1,w2,…, wk }. Thus, Nul(AC) = span { w1,w2,…, wk } i.e. w1,w2,…, wk span Nul(AC).
(c) By virtue of part(b) above, nullity (AC) = k . Hence, as per the rank-nullity theorem, rank(AC) = n-k. Further nullity (A) is also k so that rank (A) = n-k. Hence rank(AC) = rank(A).
