Show that lnn n ln nSolutionAs n nn1n221 lnn lnnn121 lnn
Show that ln(n!) n ln n.
Solution
As n! = n(n-1)(n-2)...2.1,
ln(n!) = ln(n(n1)21)
= ln(n) + ln(n1) ++ ln(2) + ln(1)
n ln(n)
Using a multiplicative variant of Gauss\'s trick, we get
(n!)2 = (1n)(2(n1))(3(n2))((n2)3)((n1)2)(n1) nn
This implies that
ln(n!) (1 / 2) n ln n
As n! nn and so ln(n!) n ln n
So (1 / 2) n ln n ln(n!) n ln n and ln(n!) = (n ln (n)).
Therefore, ln(n!) n ln n.
