If A A U sigma V find an orthogonal basis for the range of
If A A = U sigma V*, find an orthogonal basis for the range of A and the null space of A*.
Solution
ANSWER :-
a)
If there are p non-zero singular values, then the first p Columns of U span the range of A.
b)
If there are p non zero singular values,then the last n-p columns of V span the kernel of A.
If p = n , A has no kernel.
