If A aij is an n times n matrix then ai1Ak1 ai2Ak2 ainA

If A = [a_ij] is an n times n matrix, then a_i1A_k1 + a_i2A_k2 + ... + a_inA_kn = 0 for i notequalto k; a_1jA_1k + a_2jA_2k + ... + a_njA_nk = 0 for j notequalto k. Verify Theorem 3.11 for the matrix A = [-3 -7 -3 2 -5 5 -9 -7 7] by computing a_11A_12 + a_21A_22 + A_31A_32. a_11A_12 = a_21A_22 = a_31A_32 = a_11A_12 + a_21A_22 + a_31A_32 =

Solution

A12 = -49 -21 = -(-70) ; A22 = -21 -27 = -48

A32 = -(21 -63) = 42

a11A12 = 70*(-3) = - 210 ; a21A32 = -7*(-48) = 336 ; a31*A32 = (-3)*(42) = -126

So, a11A12 +a21A32 +a31A32 = -210 +336 -126 =0

 If A = [a_ij] is an n times n matrix, then a_i1A_k1 + a_i2A_k2 + ... + a_inA_kn = 0 for i notequalto k; a_1jA_1k + a_2jA_2k + ... + a_njA_nk = 0 for j notequal

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site