Can Kruskals algorithm be used for finding a minimum spannin

Can Kruskal\'s algorithm be used for finding a minimum spanning tree if you are to start from a predetermined vertex? Explain. Find the minimum spanning tree from the following graph using Kruskal\'s algorithm. Show the steps.

Solution

// C++ program for Kruskal\'s algorithm to find Minimum Spanning Tree
// of a given connected, undirected and weighted graph
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// a structure to represent a weighted edge in graph
struct Edge
{
   int src, dest, weight;
};

// a structure to represent a connected, undirected and weighted graph
struct Graph
{
   // V-> Number of vertices, E-> Number of edges
   int V, E;

   // graph is represented as an array of edges. Since the graph is
   // undirected, the edge from src to dest is also edge from dest
   // to src. Both are counted as 1 edge here.
   struct Edge* edge;
};

// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
   struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
   graph->V = V;
   graph->E = E;

   graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) );

   return graph;
}

// A structure to represent a subset for union-find
struct subset
{
   int parent;
   int rank;
};

// A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
   // find root and make root as parent of i (path compression)
   if (subsets[i].parent != i)
       subsets[i].parent = find(subsets, subsets[i].parent);

   return subsets[i].parent;
}

// A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
   int xroot = find(subsets, x);
   int yroot = find(subsets, y);

   // Attach smaller rank tree under root of high rank tree
   // (Union by Rank)
   if (subsets[xroot].rank < subsets[yroot].rank)
       subsets[xroot].parent = yroot;
   else if (subsets[xroot].rank > subsets[yroot].rank)
       subsets[yroot].parent = xroot;

   // If ranks are same, then make one as root and increment
   // its rank by one
   else
   {
       subsets[yroot].parent = xroot;
       subsets[xroot].rank++;
   }
}

// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
   struct Edge* a1 = (struct Edge*)a;
   struct Edge* b1 = (struct Edge*)b;
   return a1->weight > b1->weight;
}

// The main function to construct MST using Kruskal\'s algorithm
void KruskalMST(struct Graph* graph)
{
   int V = graph->V;
   struct Edge result[V]; // Tnis will store the resultant MST
   int e = 0; // An index variable, used for result[]
   int i = 0; // An index variable, used for sorted edges

   // Step 1: Sort all the edges in non-decreasing order of their weight
   // If we are not allowed to change the given graph, we can create a copy of
   // array of edges
   qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);

   // Allocate memory for creating V ssubsets
   struct subset *subsets =
       (struct subset*) malloc( V * sizeof(struct subset) );

   // Create V subsets with single elements
   for (int v = 0; v < V; ++v)
   {
       subsets[v].parent = v;
       subsets[v].rank = 0;
   }

   // Number of edges to be taken is equal to V-1
   while (e < V - 1)
   {
       // Step 2: Pick the smallest edge. And increment the index
       // for next iteration
       struct Edge next_edge = graph->edge[i++];

       int x = find(subsets, next_edge.src);
       int y = find(subsets, next_edge.dest);

       // If including this edge does\'t cause cycle, include it
       // in result and increment the index of result for next edge
       if (x != y)
       {
           result[e++] = next_edge;
           Union(subsets, x, y);
       }
       // Else discard the next_edge
   }

   // print the contents of result[] to display the built MST
   printf(\"Following are the edges in the constructed MST\ \");
   for (i = 0; i < e; ++i)
       printf(\"%d -- %d == %d\ \", result[i].src, result[i].dest,
                                               result[i].weight);
   return;
}

// Driver program to test above functions
int main()
{
   /* Let us create following weighted graph
           10
       0--------1
       | \\   |
   6| 5\\ |15
       |   \\ |
       2--------3
           4   */
   int V = 4; // Number of vertices in graph
   int E = 5; // Number of edges in graph
   struct Graph* graph = createGraph(V, E);


   // add edge 0-1
   graph->edge[0].src = 0;
   graph->edge[0].dest = 1;
   graph->edge[0].weight = 10;

   // add edge 0-2
   graph->edge[1].src = 0;
   graph->edge[1].dest = 2;
   graph->edge[1].weight = 6;

   // add edge 0-3
   graph->edge[2].src = 0;
   graph->edge[2].dest = 3;
   graph->edge[2].weight = 5;

   // add edge 1-3
   graph->edge[3].src = 1;
   graph->edge[3].dest = 3;
   graph->edge[3].weight = 15;

   // add edge 2-3
   graph->edge[4].src = 2;
   graph->edge[4].dest = 3;
   graph->edge[4].weight = 4;

   KruskalMST(graph);

   return 0;
}

 Can Kruskal\'s algorithm be used for finding a minimum spanning tree if you are to start from a predetermined vertex? Explain. Find the minimum spanning tree f
 Can Kruskal\'s algorithm be used for finding a minimum spanning tree if you are to start from a predetermined vertex? Explain. Find the minimum spanning tree f
 Can Kruskal\'s algorithm be used for finding a minimum spanning tree if you are to start from a predetermined vertex? Explain. Find the minimum spanning tree f

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site