Find the determinant of the matrix M 3 2x3 4 2x2 4x3 0

Find the determinant of the matrix M = [3 - 2x^3 - 4 + 2x^2 + 4x^3 0 -x^3 1 + x^2 + 2x^3 0 10 + 4x^2 - 20 -8x^2 -2 -2x^2] and use the adjoint method to find M^-1. det(M) =, M^-1 = [].

Solution

Det (M) = (3-2x2)[ (1+x2+2x3)(-2-2x2)]- (-4+2x2+4x3)[-x3(-2-2x2)] = [(2x2-3)(2x2+2)(2x3+x2+1)]– [(4x3+2x2-4) x3(2x+2)] = (8x7+4x6-4x5+2x4-12x3-8x2-6)-(8x7+12x6+4x5-8x4-8x3) = 16x6-8x5 +10x4 -4x3-8x2-6.

The Minors are computed as under:

Then,, the co- factor matrix is

-(4x5+2x4+4x3+4x2+2)

-(2x5+2x3)

-(4x4 +14x2+10)

(8x5 +4x4+8x3-4x2-8)

(4x5 +4x3-3x2-6)

(8x4 +40x2+20)

0

0

-(3x2+3)

The adjoint matrix of M is Adj(M) = P (say) =

-(4x5+2x4+4x3+4x2+2)

(8x5 +4x4+8x3-4x2-8)

0

-(2x5+2x3)

(4x5 +4x3-3x2-6)

0

-(4x5 +4x3-3x2-6)

(8x4 +40x2+20)

-(3x2+3)

Then M-1 = P/det(M)

-(4x5+2x4+4x3+4x2+2)

-(2x5+2x3)

-(4x4 +14x2+10)

(8x5 +4x4+8x3-4x2-8)

(4x5 +4x3-3x2-6)

(8x4 +40x2+20)

0

0

-(3x2+3)

 Find the determinant of the matrix M = [3 - 2x^3 - 4 + 2x^2 + 4x^3 0 -x^3 1 + x^2 + 2x^3 0 10 + 4x^2 - 20 -8x^2 -2 -2x^2] and use the adjoint method to find M^

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site