Find the determinant of the matrix M 3 2x3 4 2x2 4x3 0
Find the determinant of the matrix M = [3 - 2x^3 - 4 + 2x^2 + 4x^3 0 -x^3 1 + x^2 + 2x^3 0 10 + 4x^2 - 20 -8x^2 -2 -2x^2] and use the adjoint method to find M^-1. det(M) =, M^-1 = [].
Solution
Det (M) = (3-2x2)[ (1+x2+2x3)(-2-2x2)]- (-4+2x2+4x3)[-x3(-2-2x2)] = [(2x2-3)(2x2+2)(2x3+x2+1)]– [(4x3+2x2-4) x3(2x+2)] = (8x7+4x6-4x5+2x4-12x3-8x2-6)-(8x7+12x6+4x5-8x4-8x3) = 16x6-8x5 +10x4 -4x3-8x2-6.
The Minors are computed as under:
Then,, the co- factor matrix is
-(4x5+2x4+4x3+4x2+2)
-(2x5+2x3)
-(4x4 +14x2+10)
(8x5 +4x4+8x3-4x2-8)
(4x5 +4x3-3x2-6)
(8x4 +40x2+20)
0
0
-(3x2+3)
The adjoint matrix of M is Adj(M) = P (say) =
-(4x5+2x4+4x3+4x2+2)
(8x5 +4x4+8x3-4x2-8)
0
-(2x5+2x3)
(4x5 +4x3-3x2-6)
0
-(4x5 +4x3-3x2-6)
(8x4 +40x2+20)
-(3x2+3)
Then M-1 = P/det(M)
| -(4x5+2x4+4x3+4x2+2) | -(2x5+2x3) | -(4x4 +14x2+10) |
| (8x5 +4x4+8x3-4x2-8) | (4x5 +4x3-3x2-6) | (8x4 +40x2+20) |
| 0 | 0 | -(3x2+3) |
![Find the determinant of the matrix M = [3 - 2x^3 - 4 + 2x^2 + 4x^3 0 -x^3 1 + x^2 + 2x^3 0 10 + 4x^2 - 20 -8x^2 -2 -2x^2] and use the adjoint method to find M^ Find the determinant of the matrix M = [3 - 2x^3 - 4 + 2x^2 + 4x^3 0 -x^3 1 + x^2 + 2x^3 0 10 + 4x^2 - 20 -8x^2 -2 -2x^2] and use the adjoint method to find M^](/WebImages/33/find-the-determinant-of-the-matrix-m-3-2x3-4-2x2-4x3-0-1095933-1761577914-0.webp)