Find the exact value of the given expression sin2 cos1 1517
Solution
13) we have given sin(2*arccos(15/17))
sin(2*arccos(15/17)) =sqrt(sin2(2*arccos(15/17)))
=sqrt(1-cos2(2*arccos(15/17)))
=sqrt(1-(cos(2*arccos(15/17)))2) since cos2(2*arccos(15/17)) =(cos(2*arccos(15/17)))2
=sqrt(1-((2cos2(arccos(15/17))-1)2) since cos(2*theta)=2cos2(theta)-1,where theta=arccos(15/17)
=sqrt(1-4cos4(arccos(15/17))-1+4cos2(arccos(15/17)))
=sqrt(1-4*(cos(arccos(15/17)))4-1+4(cos(arccos(15/17)))2)
=sqrt(-4*(15/17)4+4(15/17)2)
=2*(15/17)*sqrt(1-(15/17)2)
=2*(15/17)*sqrt(64/289)
=30/17*8/17
=240/289
sin(2*arccos(15/17)) =240/289
14) we have given cos(2*theta),sin(theta)=-7/25,theta in IIIrd quadrant
cos(2*theta)=1-2sin2(theta) =1-2(-7/25)2=1-98/625=(625-98)/625 =527/625
cos(2*theta)=527/625
15) sin8x=sin(4x+4x)=sin4x*cos4x+cos4xsin4x =2sin4xcos4x since sin(A+B)=sinAcosB+cosAsinB
sin8x=2sin4x cos4x
