Find the general solution of the firstorder system of ODEs x
Solution
Write the equation in matrix-vector form, i.e. let v = (x, y) and v\' = (x\', y\') and then we have
v\' = Av
where A =
[-1, 4]
[-4, -1].
Then we find the Eigen-values with by finding the determinant of A minus m times the identity, and letting it equal 0: det(A - mI) =
| -1 - m, 4 |
| -4, -1 - m |
which is
(-1 - m)2 - (-16) = 0
(m + 1)2 + 16 = 0
(m + 1)2 = -16
m + 1 = (+-)4i
m = -1 (+-)4i.
Now you need the eigenvectors: we solve (A - mI)v = 0. For the e-value -1 + 4i, we solve
(-1 - (-1 + 4i))v1 + 4v2 = 0
-4v1 + (-1 - (-1 + 4i))v2 = 0
4iv1 + 4v2 = 0 [1]
-4v1 + 4iv2 = 0 [2]
Using [2] gives v1 = iv2. So let v2 = s and v1 = is. Then the eigenvector for -1 + 4i is [is, s] = s*[i, 1] or just [i, 1].
Doing the same process with the eigen-value -1 - 4i, we get
(-1 - (-1 - 4i))v1 + 4v2 = 0
-4v1 + (-1 - (-1 - 4i))v2 = 0
giving
-4iv1 + 4v2 = 0 [1]
-4v1 - 4iv2 = 0 [2]
Using [1] shows that v2 = iv1, so let v1 = s and v2 = 1s. The second eigen-value becomes [1, i].
So the general solution of this is given by multiplying each eigenvector by a constant of integration and its solution given by the eigenvalue; i.e.
v = c1*[i, 1]*e^((-1 + 4i)t) + c2*[1, i]*e^((- 1 - 4i)t).
For the \'cos and sine\' form, use e^(it) = cos(t) + i*sin(t), i.e
v = e^(-t)*{c1*[i, 1]*e^(4it) + c2*[1, i]*e^(-4it)}
= e^(-t)*{c1*[i, 1]*(cos(4i) + i*sin(4i)) + c2*[1, i]*(cos(4i) - i*sin(4i))}
= e^(-t)*{[i*c1 + c2, c1 + i*c2]*cos(4t) + i*[i*c1 + c2, c1 + i*c2]*sin(4t)}
= e^(-t)*{[i*c1 + c2, c1 + i*c2]*cos(4t) + i*[i*c1 + c2, c1 + i*c2]*sin(4t)}
= e^(-t)*{[i*c1 + c2, c1 + i*c2]*cos(4t) + [-c1 + i*c2, i*c1 - c2]*sin(4t)}.
Or we can separate out to real and imaginary, so
= e^(-t)*{([c2, c1] + i*[c1, c2])*cos(4t) + (-[c1, c2]+ i* [c2, c1])*sin(4t)}
= e^(-t)*{[c2*cos(4t) - c1sin(4t), c1cos(4t) - c2sin(4t)] + i*[c1*cos(4t) + c2*sin(4t), c2*cos(4t) + c1*sin(4t)]}.

