Apply Eulers Method to the differential equation dBtdt ARt

Apply Eulers Method to the differential equation dB(t)/dt = - AR(t)/R(t) + 1 R(0) = 1s and develop a difference equation approximation (ie replace dR(t)/dt by the forward difference approximation and re-arrange. Using a time step of delta t = 1 second, estimate the rate of production of time 1, 2 & 3 seconds.

Solution

Euler method is yn+1 = yn + h y\'n

here yn\'=- Ayn/(yn+1)    y0 = 1; and step size h=1;

therefore yt+1 =yt - 1.Ayt/(yt +1 )

t=0 s

y1 = =y0 - 1.Ay0/(y0 +1 ) = 1 - A/2 = 1 - 0.5 A

t=1s

y2 = =y1 - 1.Ay1/(y1 +1 ) = 1 - 0.5 A + A*(1-0.5A)/(2 -0.5A) = 1 - 0.5A +A(1-0.5A)/(2 - 0.5 A)

= ( 2 - 1.5 A + 0.25 A2 + A - 0.5 A2 ) / (2 - 0.5 A ) = ( -0.25 A2 - 0.5A + 2 ) / (2 - 0.5A )

t=2

Y3 = y2 - Ay2/(1 +y2 ) = ( -0.25 A2 - 0.5A + 2 ) / (2 - 0.5A ) - A . ( -0.25 A2 - 0.5A + 2 ) / (2 - 0.5A ) /(1+ ( -0.25 A2 - 0.5A + 2 ) / (2 - 0.5A ) ) = ( -0.25 A2 - 0.5A + 2 ) / (2 - 0.5A ) - A( -0.25 A2 - 0.5A + 2 )/(4 - A - 0.25 A2 )

 Apply Eulers Method to the differential equation dB(t)/dt = - AR(t)/R(t) + 1 R(0) = 1s and develop a difference equation approximation (ie replace dR(t)/dt by

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site