Define the linear transformation L R2 rightarrow R2 by Le1
Define the linear transformation L: R^2 rightarrow R^2 by L(e_1) = 3e_1 + e_2 and L(e_2) = -e_1 + 3e_2. Find L^3(e_1) and L^3(e_2). (You don\'t need matrices.)
Solution
We have L2(e1) = L(L(e1 ))=L(3e1+e2)=3L(e1)+L(e2)=3(3e1+e2)+(-e1+3e2)=9e1+3e2–e1+3e2= 8e1+6e2. Then L3(e1)= L(L2(e1)) = L(8e1+6e2) = 8L(e1)+ 6L(e2)=8(3e1+e2)+6(-e1+3e2)= 24e1 +8e2 -6e1 +18e2 = 18e1 +26e2.
We have L2(e2) = L(L(e2))=L(-e1+3e2)=-L(e1)+3L(e2)= - (3e1+e2)+3(-e1+3e2)=-3e1-e2–3e1+9e2= -6e1+8e2. Then L3(e2)= L(L2(e2)) = L(-6e1+8e2) = -6L(e1)+ 8L(e2)=-6(3e1+e2)+8(-e1+3e2)= -18e1-6e2 -8e1 +24e2 = -26e1 +18e2.
