Show that conditional statement is a tautology without using
Show that conditional statement is a tautology, without using truth table. [(p rightarrow q)^(q rightarrow r)] rightarrow (p rightarrow r)
Solution
[(p->q) (q->r )] ->(p->r)
=[~p v q ~q v r ]->(p->r).............[ q ~q=F]
=[~p v F v r]->(p->r)
=F->(p->r) [F-> anything =T]
=T
![Show that conditional statement is a tautology, without using truth table. [(p rightarrow q)^(q rightarrow r)] rightarrow (p rightarrow r)Solution[(p->q) (q Show that conditional statement is a tautology, without using truth table. [(p rightarrow q)^(q rightarrow r)] rightarrow (p rightarrow r)Solution[(p->q) (q](/WebImages/33/show-that-conditional-statement-is-a-tautology-without-using-1096463-1761578287-0.webp)