Determine the equations of motion using Lagrange method The
Determine the equations of motion using Lagrange method. The link of length L is massless. m_1 = 3m.
Solution
Take the kinetic energy and potental energy of the system:
T = 1/2 m1((X\')^2 +1/2( mL^2 theta \' ^2) = k.e of cart + k.e of inverted pendulum
P.E= 1/2 k X^2 +1/2 K(-X)^2 + 1/2 Ktheta (theta)2= KX^2
Form L=T-V =KE -PE
Lagarange eqns give
d/dt(dL/dX\') -dL/dX =0
and similarly for theta coordinate
result: M1 X\" =2KX
M L^2 (theta)\" - Ktheta (Theta) + mgL sin (theta) =0
