Determine the equations of motion using Lagrange method The

Determine the equations of motion using Lagrange method. The link of length L is massless. m_1 = 3m.

Solution

Take the kinetic energy and potental energy of the system:

T = 1/2 m1((X\')^2 +1/2( mL^2 theta \' ^2) = k.e of cart + k.e of inverted pendulum

P.E= 1/2 k X^2 +1/2 K(-X)^2 + 1/2 Ktheta (theta)2= KX^2

Form L=T-V =KE -PE

Lagarange eqns give

d/dt(dL/dX\') -dL/dX =0

and similarly for theta coordinate

result: M1 X\" =2KX

M L^2 (theta)\" - Ktheta (Theta) + mgL sin (theta) =0

 Determine the equations of motion using Lagrange method. The link of length L is massless. m_1 = 3m. SolutionTake the kinetic energy and potental energy of the

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site