let fx x2 4x 2 and gx 2x 1 Find ga 4 f3 f3 f g0 fg2 t
let f(x) = x^2 + 4x - 2 and g(x) = 2x + 1. Find: g(a + 4) f(-3) (f(-3) (f + g)(0) (fg)(-2) the domain of f/g
Solution
Given that
f(x) = x2 + 4x - 2 , g(x) = 2x + 1
5 ) g(a + 4) = 2(a + 4) + 1 [ Since , g(x) = 2x + 1 ]
= 2a + 8 + 1
g(a + 4) = 2a + 9
6 ) f(x) = x2 + 4x - 2
f(-3) = (-3)2 + 4.(-3) - 2
= 9 - 12 - 2
f(-3) = -5
7 ) (f + g)(0) = f(0) + g(0)
f(x) = x2 + 4x - 2
f(0) = (0)2 + 4.(0) - 2
f(0) = -2
g(x) = 2x + 1
g(0) = 2(0) + 1
g(0) = 1
Hence ,
(f + g)(0) = f(0) + g(0)
(f + g)(0) = -2 + 1
(f + g)(0) = -1
8 ) (fg)(-2) = f(-2).g(-2)
f(x) = x2 + 4x - 2
f(0) = (-2)2 + 4.(-2) - 2
f(0) = 4 - 8 - 2
f(0) = -6
g(x) = 2x + 1
g(-2) = 2(-2) + 1
g(-2) = -3
Hence ,
(fg)(-2) = f(-2).g(-2)
= (-6).(-3)
(fg)(-2) = 18

