Write the given expression in terms of x and y only cossin1x
Write the given expression in terms of x and y only. cos(sin^-1(x) - tan^-1(y)) ________ Find the exact value of the expression. sin(cos^-1(5/6) - tan^-1(1/3) ______
Solution
Cos(sin-1x-tan-1y)
This is of the form
Cos(A-B)=cosAcosB-sinAsinB
So we get
Cos(cos-1x) cos(tan-1y)-sin(cos-1x)sin(tan-1y)
cos(tan-1y)
tan -1y=t
tan t=y
cos t=1/sqrt(1+y2)
Therefore
Cos(tan-1x)=1/sqrt(1+y^2)
Sin(cos-1x)
Cos-1x=t
cos t=x
Sin t=sqrt(1-x2)
Therefore sin(cos-1x)=sqrt(1-x2)
Sin(tan-1y)
Tan-1y=t
tan t=y
sin t=y/sqrt(1+y2)
So we get
x*1/(sqrt(1+y^2)+(sqrt(1-x^2)(y/sqrt(1+y^2))
(x+y sqrt(1-x^2))/(sqrt(1+y^2))
