Sterlings approximation for large factorials is given by n
Solution
1.
clc;
 close all;
 clear all;
 x=factorial(50)
when we use formula we get 50! = 3.05134e+64
using matlab function we get 50! = 3.04140e+64
so the difference d = 0.00994
2. (i)
mainAQ1.m
clc;
 close all;
 clear all;
 Q=[12 8 4 3 4;2 5 8 4 6]
 A=Q(1:2,2:4);
 A(3,1:3)=A(1,1:3);
 A(1:3,4)=A(1:3,1);
 A(1:3,1)=A(1:3,3);
 A(1:3,3)=A(1:3,4);
 A(:,4)=[]
Output:-
Q =
    12     8     4     3     4
      2     5     8     4     6
 A =
     3     4     8
      4     8     5
      3     4     8
2(ii)
mainAQ2.m
clc;
 close all;
 clear all;
 Q=[12 8 4 3 4;2 5 8 4 6]
 A=Q;
 A(:,2:3)=[]
Output:-
Q =
    12     8     4     3     4
      2     5     8     4     6
 A =
    12     3     4
      2     4     6
3.
>> F= [3*ones(3,1) 4*ones(3,1) 3*ones(3,1)]
F =
     3     4     3
      3     4     3
      3     4     3


