Sterlings approximation for large factorials is given by n
Solution
1.
clc;
close all;
clear all;
x=factorial(50)
when we use formula we get 50! = 3.05134e+64
using matlab function we get 50! = 3.04140e+64
so the difference d = 0.00994
2. (i)
mainAQ1.m
clc;
close all;
clear all;
Q=[12 8 4 3 4;2 5 8 4 6]
A=Q(1:2,2:4);
A(3,1:3)=A(1,1:3);
A(1:3,4)=A(1:3,1);
A(1:3,1)=A(1:3,3);
A(1:3,3)=A(1:3,4);
A(:,4)=[]
Output:-
Q =
12 8 4 3 4
2 5 8 4 6
A =
3 4 8
4 8 5
3 4 8
2(ii)
mainAQ2.m
clc;
close all;
clear all;
Q=[12 8 4 3 4;2 5 8 4 6]
A=Q;
A(:,2:3)=[]
Output:-
Q =
12 8 4 3 4
2 5 8 4 6
A =
12 3 4
2 4 6
3.
>> F= [3*ones(3,1) 4*ones(3,1) 3*ones(3,1)]
F =
3 4 3
3 4 3
3 4 3

