sin4xcos4x12cos2x verify the identitySolutionLHS sin4x cos
sin4x-cos4x=1-2cos2x verify the identity
Solution
LHS = sin^4x - cos^4x = ( sin^2x + cos^2x ) * ( sin^2x - cos^2x)
= 1 * ( sin^2x - cos^2x )
 = sin^2x - cos^2x
 = 1 - cos^2x - cos^2x
 = 1 - 2cos^2x = RHS
 
 = -1 ( cos^2x - sin^2x)
 = -1 ( cos2x)
 = -1 ( 2 cos^2x -1)
 = - 2 cos ^2x + 1
 = 1 - 2cos^2x = RHS

