Simplify f by Boolean algebra as much as possible fa b c ab
Simplify f by Boolean algebra as much as possible.
f(a, b, c) = abc + ab’c + a’bc +a’b’c + a’bc’
Solution
given f(a,b,c) = abc+ ab\'c+a\'bc +a\'b\'c +a\'bc\'
= ac(b+b\') +a\'bc+a\'b\'c+a\'bc\'
=ac(1) +a\'bc+a\'b\'c+a\'bc\' [ Formula: b+b\' =1]
=ac+a\'bc+a\'b\'c+a\'bc\'
= ac+a\'bc+a\'(b\'c+bc\')
=ac+a\'bc+a\'(b XOR c) [since it is an XOR operation ]
