Find a basis px qx for the kernel of the linear transformati
Find a basis [p(x) q(x)] for the kernel of the linear transformation L:epsilon P_3 [x] R| defined by L(f(x)) =f\'(2) -f(1)| where P_3[x] is the vector space of polynomials in x with degree less than 3.
Solution
L(a+bx+cx^2+dx^3)=(b+2cx+3dx^2)(2)-(a+b+c+d)=-a-c-d+4c+12d=-a+3c+11d=0
a=3c+11d
f(x)=3c+11d+bx+cx^2+dx^3=c(3+x^2)+bx+d(11+x^3)
Basis is
{3+x^2,x,11+x^3}
![Find a basis [p(x) q(x)] for the kernel of the linear transformation L:epsilon P_3 [x] R| defined by L(f(x)) =f\'(2) -f(1)| where P_3[x] is the vector space of Find a basis [p(x) q(x)] for the kernel of the linear transformation L:epsilon P_3 [x] R| defined by L(f(x)) =f\'(2) -f(1)| where P_3[x] is the vector space of](/WebImages/34/find-a-basis-px-qx-for-the-kernel-of-the-linear-transformati-1099632-1761580728-0.webp)