Let A 2 0 0 3 2 0 6 1 1 Find the characteristic polynomial
     Let A = [2 0 0  3 2 0  6 -1 1]  Find the characteristic polynomial of A.  Find the eigenvalues and bases for the corresponding eigenspaces of A.  State the algebraic multiplicity and geometric multiplicity of each eigenvalue of A.  Is A is diagonalizable? Justify your answer.  Compute A^7 v vector, where v vector = [-17 3 3].![Let A = [2 0 0 3 2 0 6 -1 1] Find the characteristic polynomial of A. Find the eigenvalues and bases for the corresponding eigenspaces of A. State the algebrai  Let A = [2 0 0 3 2 0 6 -1 1] Find the characteristic polynomial of A. Find the eigenvalues and bases for the corresponding eigenspaces of A. State the algebrai](/WebImages/34/let-a-2-0-0-3-2-0-6-1-1-find-the-characteristic-polynomial-1100130-1761581081-0.webp) 
  
  Solution
a) Characterstic equation :
(2-x)(2-x)(1-x) -0 + 6(0) =0
-x^3 +5x^2 - 8x +4 =0
b) Eigen values
x = 1 ,2 , 2
Eigen vectors : x= 2; ( 1,0,0)
x = 1 ; (-9,1,1)
c) x = 1 algebraic multiplicty = 1 , geometric multiplicty = 1
x = 2 ; algebraic multiplicty = 2 , geometric multiplicty = 2
d) Matrix is not diagonlisable as no. of eigen vectors and dimension of original matrix are not same
![Let A = [2 0 0 3 2 0 6 -1 1] Find the characteristic polynomial of A. Find the eigenvalues and bases for the corresponding eigenspaces of A. State the algebrai  Let A = [2 0 0 3 2 0 6 -1 1] Find the characteristic polynomial of A. Find the eigenvalues and bases for the corresponding eigenspaces of A. State the algebrai](/WebImages/34/let-a-2-0-0-3-2-0-6-1-1-find-the-characteristic-polynomial-1100130-1761581081-0.webp)
