Let V be a vector space and suppose that U and W are subspac
Solution
Let X+Y U W , where X and Y be arbitrary vectors in U and W respectively. Then X = a1u1+a2u2 +…+amum and Y = b1w1+b2w2 +…+bnwn , where a,a,…,a, b,b,…, b are arbitrary scalars. Further, X+Y = a1u1+a2u2 +…+amum + b1w1+b2w2 +…+bnwn so that X+Y span{ u1,u2,…,um ,w1, w2,…wn}.Hence U W span{ u1,u2,…,um ,w1, w2,…wn. Also, an arbitrary vector in span{ u1,u2,…,um ,w1, w2,…wn} is of the form a1u1+a2u2 +…+amum + b1w1+b2w2 +…+bnwn = X +Y, where X = a1u1+a2u2 +…+amum and Y = b1w1+b2w2 +…+bnwn. Thus, span{ u1,u2,…,um ,w1, w2,…wn} U W =V. Hence V= U W= span{ u1,u2,…,um ,w1, w2,…wn}. Further, since u1,u2,…,um form a basis for U, these vectors are linearly independent. Similarly, w,w,..w are limnearly independent. Now, since, U W = {0}, hence the vectors u1,u2,…,um ,w1, w2,…wn are linearly independent. Therefore,{ u1,u2,…,um ,w1, w2,…wn}is a basis for U W.

